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Abstract 

It was shown by Claverie that the interactions between atoms and molecules make 
unphysical electronic solutions of the Schr~Sdinger equation accessible in perturbation 
calculations of intermolecular interactions, accessible in the sense that the perturbation 
expansion is likely to converge to an unphysical solution if it converges at all. This is 
a difficult problem because there are generally an infinite number of unphysical states 
with energies below that of the physical ground state. We have carried out configuration 
interaction calculations on LiH of both physical and unphysical states. They show that 
avoided crossings occur between physical and unphysical energy levels as the interaction 
between the two atoms is turned on, i.e. as the expansion parameter ~t is increased from 
0 to 1. The avoided crossing for the lowest energy state occurs for ;t < 0.8, implying 
that the perturbation expansion will diverge for larger values of ~.. The behavior of the 
energy levels as functions of ~ is shown to be understandable in terms of a two-state 
model. In the remainder of the paper, we concentrate on designing effective Hamiltonians 
which have physical solutions identical to those of the Schx6dinger equation, but which 
have no unphysical states of lower energy than the physical ground state. We find that 
we must incorporate ideas from the Hirschfelder-Silbey perturbation theory, as modified 
by Polymeropoulos and Adams, to arrive finally at an effective Hamiltonian which 
promises to have the desired properties, namely, that all unphysical states be higher in 
energy than the physical bound states, that the first and higher order corrections to the 
energy vanish in the limit R = ~o, that the leading terms of the asymptotic I/R expansion 
of the energy be given correctly in second order, and that the overlap between the zeroth 
order wave function and the corresponding eigenfunction of the effective Hamiltonian 
be close to one. 

1. Introduction 

On the basis of physical evidence, the interactions between atoms and molecules 
have generally been regarded as weak and, thus, particularly well suited for study 
by perturbation methods. It is clear from the work of Claverie [1], and Morgan and 
Simon [2], however, that in terms of the mathematical theory, the interactions must 
be very strong, because they create an infinite number of unphysical states of  lower 
energy than the physical ground state of most assemblies of atoms and molecules. 
These lower energy states are unphysical in the sense that the antisymmetric projections 
of their wave functions are identically zero. They have played no important role in 
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the theory of electronic structure because they are inaccessible from the physical 
states, the interactions between electrons being symmetric in the electronic coordinates. 
However, in a theory in which one distinguishes between groups of electrons to the 
extent that the electron-electron interactions depend on the group to which each 
electron is assigned, the physical and unphysical states may mix so that one ultimately 
obtains an unphysical solution [1]. This is a fundamental barrier which any theory 
of intermolecular interactions should attempt to overcome. We report here what we 
have learned so far in trying to overcome it. 

In a recent paper [3], we derived explicitly for the Hamiltonian of the LiH 
molecule at infinite internuclear separation both the unphysical and physical spectrum. 
We showed that there were an infinite number of bound, unphysical states lower 
in energy than the physical ground state, and a continuum of unbound, unphysical 
states beginning below the energy of the physical ground state. This is exactly what 
Morgan and Simon, without explanation, said was true for any system containing 
at least one atom with an atomic number greater than two [2]. In the light of  this, 
it is difficult to imagine that any perturbation theory of intermolecular interactions 
can be correct if it is based on dividing the electronic Hamiltonian of  a complex 
system into an unperturbed Hamiltonian /~°and a perturbation V, with /-l°defined 
to be the sum of the Hamiltonians for groups of electrons, specific electrons being 
assigned to each group. This is exactly what is done in the polarization approximation, 
the solution being determined by a Rayleigh-SchrOdinger expansion. Claverie [1] 
made it quite clear that the polarization approximation makes the unphysical states 
accessible, so that if the expansion converges, it must be to the lowest energy 
unphysical state when the unperturbed function is the lowest energy eigenfunction 
of /~o He did not examine, however, alternative perturbation methods. 

In the same paper, we examined several of the exchange perturbation theories 
that have been proposed over the last twenty-five years. The method we used 
allowed us to consider only those theories which were based on effective Hamiltonians. 
We derived the spectra of these effective Hamiltonians for LiH at infinite nuclear 
separation to see if they resolved the unphysical-states problem that invalidates the 
polarization approximation. The Hirschfelder-Silbey method [4,5], as modified by 
Polymeropoulos and Adams [6], is based on an effective Hamiltonian which has a 
spectrum differing insignificantly from the Schrtidinger Hamiltonian and, thus, is 
not an improvement on the polarization approximation. The Eisenschi tz-London 
type theories of Hirschfelder [5], Peierls [7], and Polymeropoulos and Adams [8], 
on the other hand, all shift the unphysical states up in energy so that there is a one- 
to-one correspondence between the lowest energy eigenstate of /~o and the lowest 
energy eigenstate of each effective Hamiltonian. In fact, the last named gave also 
a one-to-one correspondence between the first excited states. We showed, however, 
that in diatomic systems, as the number of electrons increase, the unphysical states 
move down in energy, approaching from above the lowest physical energy for the 
Hirschfelder and Peierls Hamiltonians, the next to lowest for the Polymeropoulos-  
Adams Hamiltonian. Thus, the best that has come out of the work on exchange 
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perturbation theory to date are theories which may work for the physical ground 
state. We do not feel that this is a satisfactory achievement, although it is remarkable 
that any of the proposed methods even partially solved the unphysical-states problem 
since there appears to have been no conscious effort to do so. 

In the next section we present the results of calculations of the eigenvalues 
of ~ o +  ~I~ for LiH as functions of A, using an unconventional configuration interaction 
method, one which yields unphysical as well as physical solutions for )~ = 1. The 
calculations clearly show what happens to the eigenvalues of H°+  ~.1~" as the coupling 
parameter ;I, is increased from zero to one. In particular, the lowest energy eigenstate 
of/~0 is transformed continuously into the lowest unphysical eigenstate of /~o+ ~, 
just as Claverie [1] argued it would be. The graph of the Ek(~. ) versus ~ shows many 
avoided crossings, and an interesting "persistence" of eigenvalues through avoided 
crossings. By persistence, we mean that El(A, ), for example, is almost a straight line 
before the first avoided crossing, and that after that avoided crossing, E2(~I, ) 
approximately continues that straight line. A similar observation applies to the 
second avoided crossing,t'that between E 2 and E 3, and to many other avoided 
crossings as well. This behavior becomes more pronounced as the nuclear separation 
R increases. 

In section 3, we explain why one should expect the eigenvalues to persist 
after avoided crossings. Our explanation suggests, also, why the polarization 
approximation gives the correct asymptotic 1/R expansion [2,9]. On the other band, 
our analysis gives no assurance that the second-order polarization approximation 
energy is meaningful at finite R. It is apparent that the expansion of Ek(X) in a 
Taylor series about ~=  0 cannot converge beyond the point at which the first 
avoided crossing occurs [10], about 3.= 0.8. 

We define in section 4 two effective Hamiltonians which shift all unphysical 
state energies up into the physical continuum without altering the physical, bound 
state energies or wave functions. Our objective is to see if the polarization approximation 
can be saved by changing the Hamiltonian. It is worth saving because it is a simple 
approximation and because it gives the asymptotic 1/R expansion coefficients correctly 
[2,9]. We show that the perturbation theories based on these effective Hamiltonians 
are unsatisfactory as new bases for the theory of intermolecular interactions. The 
ways in which they are unsatisfactory are similar, suggesting that a more sophisticated 
approach might be successful. 

The Hirschfelder-Silbey (HS) method is more sophisticated than the polarization 
approximation and, like the latter, gives correctly the leading terms in the asymptotic 
1/R expansion in the second order in the energy [10-12]. Unfortunately, the HS 
method may also diverge due to the unphysical states. In section 5, we review the 
theoretical basis for the HS method, then develop three new HS Harniltonians based 
on the two effective Hamiltonians introduced in section 4. We show that two fail 
certain tests and must be classed as unacceptable. The third passes these tests, but 
it will require further study to determine if it solves the unphysical-states problem 
for the HS method. 
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In the last section, we put into perspective what we have learned in this 
paper. Our attempts to design an effective Hamiltonian which gets around the 
unphysical-states problem appear to have been successful, but it was not the 
straightforward process the word "design" suggests. 

2. Configuration interaction calculations on LiH 

The results we derived previously [3] for LiH at infinite R show that it is 
u2alikely that the lowest energy eigenfunction of/~o is transformed by the perturbation 
V into the lowest energy physical eigenfunction of /~  = /~o+  ~. How the eigenvalues 
o f / ~ o +  A.V at finite R change as A. increases from 0 to 1 was left to conjecture. In 
fact, one might hope that our discussion, or even Claverie's analysis [1] of  the He 2 
interaction, omits some important point that will somehow make the polarization 
approximation work correctly in the end. Here, we show by ab initio calculations 
that the lowest energy eigenstate of/~o smoothly becomes the lowest energy, unphysical 
eigenstate of H as & increases from 0 to 1. The calculations have been carried out 
with an unconventional configuration interaction [CI] program, one in which each 
configuration is a product of two determinants. 

Before we can discuss our numerical results, we have to explain the ideas on 
which the program is based and what one can expect to learn from it. We begin by 
dividing the N electrons of a diatomic molecule between the two atoms, A and B, 
assigning electrons 1, 2 . . . . .  N A to A, and the rest to B. Let /~A be the nonrelativistic 
Hamiltonian of A in the absence of B, and define /~B analogously. The perturbing 
potential r~ is just the difference between H,  the nonrelativistic Hamiltonian for 
the molecule in the Born-Oppenheimer  approximation, and /.~o=/~A+/~a, i.e., 
I~ = /~ - /~o .  Note that the operators which interchange A-atom electrons among 
themselves commute with /~°and V. The same is true for the operators which 
interchange the B-atom electrons. Thus, we can require that the eigenfunctions 
W(&) of H°+  A.V be antisymmetric under single interchanges of A-atom electrons 
and, separately, under interchanges of B-atom electrons. This limits in no way the 
generality of our analysis since we are interested in the interactions between atoms 
which are in states satisfying the Pauli principle. The q/(&) will generally have no 
particular symmetry under the interchange of an A-atom electron with a B-atom 
electron when ~. ~ 1. Thus, we can expand W(;t) in a basis set of functions, each 
of which is antisymmetric in electron coordinates 1 through N g and, separately, in 
coordinates N g + 1 through N. We have used a bideterminantal basis, i.e., one in 
which each basis function is the product of two Slater determinants, one for the first 
N A electrons and one for the remaining N B electrons. The same set of orthonormalized, 
basis orbitals has been used in constructing both the A and B determinants. 

The reader might remark at this point that the interchange of electron 1 from 
the A-determinant with electron N from the B-determinant, for example, gives a 
function which is neither antisymmetric under interchanges of coordinate 1 with 
other A-group coordinates, nor antisymmetric under interchanges of coordinate N 
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with other B-group coordinates. In other words, the bideterminantal basis does 
not provide a representation of all single-interchange operators. In our earlier 
discussion [3] of  the states of  LiH, we implicitly used a bideterminantal basis, but 
we failed to discuss this aspect carefully, with the consequence that there is an error 
in fig. 2 of  that paper. 

Although the bideterminantal basis does not provide a representation of  the 
single-interchange operators P/j, it does provide a representation of the operator 
~j "-Y.i~A~'~j~B~'j, i.e. i is summed over A-atom coordinates, j over B-atom 
coordinates. The demonstration of this for LiH is straightforward. Although it is 
irrelevant to our discussion of LiH, it is worth remarking here that the bideterminantal 
basis also provides a representation of the operator which is a sum over all double 
interchanges of  coordinates between groups, the operator which is a sum over all 
triple interchanges, and so on. In view of  this limitation of  the bideterminantal 
basis, fig. 2 in our previous paper [3] incorrectly shows that each of  the two lowest 
eigenstates o f /~o  for LiH correlate with four eigenstates of H ,  one physical and 
three unphysical. In fact, in the bideterminantal basis, each of  the eigenstates o fH  ° 
for LiH correlates with one physical and one unphysical state o f H .  At infinite R, 
the ~hysical function is obtained from the/~o eigenfunction F ° by application of  
1 - P t ,  the unphysical, by application of  3+  ~'t. That there is only a doubling 
of  each /~o  state is consistent with our numerical results. See the appendix for 
details. 

In constructing the orbital basis set for the calculations reported here, we 
have used the Har t ree -Fock  ls, 2s and 2per orbitals of  Li, and the ls, 2s and 2per 
hydrogen atom orbitals. These are sufficient to give a Har t ree-Fock level of  accuracy 
for the two lowest energy levels of  each atom at infinite R. The Har t ree -Fock  
orbitals of  Li were expanded in an STO basis. These six atomic orbitals were 
transformed into an orthonormal set by L0wdin's  method [13] because we wanted 
to work with an atomic-like set of  orthonormal basis orbitals. This gave a total of  
1080 bideterminantal configurations for the full CI calculations on singlet states. 
Integrals were evaluated using the BISON program [14]. 

In fig. 1, we present our results for the lowest energy, 1E levels o f / ~ o  + ~9  
for LiH at R = 5.0 Bohr. Note that we have included the nuc lear -nuc lear  repulsion 
term in V. At it = 1, five unphysical states appear below the lowest energy, physical 
state. One can clearly see from fig. 1 that the lowest energy physical state begins 
at )t, = 0 as the sixth lowest eigenstate of/~o.  This E(~) is involved in six avoided 
crossings between A, = 0 and/1, = 1, the last occurring at )t, = 1. The lowest energy 
eigenstate o f /~o  is transformed by the interaction into the lowest energy unphysical 
state o f  /~o + 9. 

In fig. 2, we have replotted the data from fig. 1 on a larger scale so that some 
of  the avoided crossings can be seen in more detail. This should leave little doubt 
that the lowest eigenvalue El( ;0  o f /~o  + ;I,9 is a continuous function of  )~, and that 
the expansion of El(A.) in powers of  A can not converge at A, = 1 to the energy of 
the physical ground state. In fact, we show in the next section that the expansion 
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must  diverge for 1' greater than the value of  1' at which the first avoided crossing 
o c c u r s .  

In fig. 3, we have plotted the values of Ek(A,) for LiH at 10.0 Bohr. Note that 
it is not clear from this figure that avoided crossings have occurred, although this 
can be verified by replotting the data on the same scale used in fig. 2. Figure 3 
makes it look like the lowest eigenvalue at 1' = 0 crosses several other eigenvalues 
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Fig. 3. The eigenvalues of II ° + ;tf/ for 1Z states of LiH at R = 10.0 
Bohr plotted against the expansion parameter ~. The locations of the 
three lowest energy physical states at 2 = 1 are marked by arrows. 

as 1' increases, becoming at ,,t, = 1 the energy of  the physical ground state. In fact, 
what one is seeing for k = 1 to 5 is the 1' dependence of Ek(1') before the avoided 
crossing, continuing in the 1' dependence of E~ + 1(i,) after the avoided crossing. We 
show in section 3 that this is just  the type of behavior one expects to see when two 
states interact weakly. It is this behavior that probably explains why the coefficients 
in the asymptotic 1/R expansion can be determined exactly by the polarization 
approximation. On the other hand, one must  remember  that if we could do exact 
calculations of  the Ek(1') for LiH, we would see an infinite number  of  discrete 
energies below the physic'~ ground-state energy and a continuum of energies overlaying 
it. Thus,  we expect the Ek(1'), which becomes the physical ground-state energy at 
1' = 1, to be involved in an infinite number  of  avoided crossings, the cumulat ive 
effect of  which is difficult to project. 
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Our ab initio calculations show that the problem first recognized by 
Claverie [1], and Morgan and Simon [2], is real. They also show that our 
analysis [3] of  the LiH system at infinite R did not overstate the seriousness of the 
problem. We find it difficult to see how a mathematical ly correct theory of 
intermolecular interactions at finite R, perturbative or nonpcrturbative, can be developed 
by ignoring it. 

3. Persistence of eigenvalue trends through avoided crossings 

Figure 3 clearly exhibits what can be described as the persistence of eigenvalue 
trends through avoided crossings. One can easily understand why the trends persist 
by looking at a two-state problem. The two-state problem also shows that the radius 
of  convergence of the perturbation expansion in powers of )~ must be less than the 
value of  A. at which the first avoided crossing occurs. This point has already been 
made by Kutzclnigg [10] in a detailed study of the limiting processes used in 
intermolecular perturbation theory. 

Let Z~ and Z2 be the two state functions which interact. We set 

and 
H ~  = <X~I/~ ° + &~'Ix~ > = ek +&V~ 

HI2 = (z l l /~°  + -~VIz2)  = &VI2. 

Note that for the last equality to hold we must assume that either Z~ or Z2 is an 
eigenfunction of /~0 ,  and that Z1 is orthogonal to Z2. We could drop the requirement 
of  orthogonality, but it gains us nothing and makes the analysis more complicated. 
The solution of the two-state secular equation is 

1 E+ = ~(H11 + H22)+ 1%/iH22 - Hll)  2 +4H22 . (3.1) 

We assume that e2 > el, so that for ~ small enough, H22 > H I1. In order to have an 
avoided crossing, we must have e2 + V22 < el + VI~, i.e., for ,~ close to 1, H22 </4ll. 
Let &c be the value of ~ at which H22 = Hi1, i.e., ~c = ( e 2 -  e l ) / (V l l  - V22). 

The key expression for understanding the behavior immediately before and 
after the avoided crossing is derived from eq. (3.1). For values of ,~ smaller than 
;t~, if V12 is sufficiently small, we can expand the radical in eq. (3.1) in powers of  
H22/(H2z  - HII) 2. For )~ < A. c, the difference H22- Hll is positive, so that 

E+ = e 2 + ,~1/)2 4 )]'2712 + . . . .  (3 .2 )  
E 2 - g  1 + ~ ( V 2 2 - V l l )  

E_ = e 1 + / ~ V l l -  /],21/12 + . . . .  ( 3 . 3 )  
E 2 - e  1 + / ] , ( V 2 2 - V i i )  
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For & > A.c, on the other hand, H22- Hll is negative, so that the expression for E+ 
then is identical to the expression on the right-hand side in eq. (3.3), and that for 
E_, to the one on the right-hand side in (3.2). In short, as ~ increases through ~ ,  
the formula for the upper energy state becomes the formula for the lower state, and 
vice versa. Since V)2 has been assumed to be very small in magnitude, the term 
linear in A, in E+ and E_ dominates the behavior of the eigenvalues before and after 
the avoided crossing, hence the persistence of the eigenvalue trends as functions of 
~. One can also readily verify that after the avoided crossing, the upper energy state 
function is predominantly Z1, the lower Z2, i.e., exactly the opposite of the situation 
for A,< ;to. 

We have expanded the energy expression (3.1) in a power series, but not in 
powers of ~ as is done in the polarization approximation. The radius of convergence 
of the A, expansion is determined by the condition (H22- Hi1) 2 + 4H~2 = 0. This 
implies convergence for real ~ < ,~c/~/K with K = 1 + 41VI2Iz/(v~I - V22) 2. Since we 
have assumed here that [ V121 << Vll - V22, the radius of convergence is only slightly 
smaller than A~ c. 

It is instructive to look more closely at the first avoided crossing undergone 
by the lowest energy state in fig. 3 from the standpoint of the two-state model. We 
know that Z1, for sufficiently large R, is the singlet projection of the antisymmetrized 
product of the Li ground-state wave function for electrons 1-3 with the hydrogen 
1 s for electron 4. The function Z2 is more complicated to define. We know that after 
the crossing, the lowest energy function must be predominantly Z2, and that this 
function must be the lowest energy unphysical state function of LiH. We discussed 
this function extensively in our previous paper [3]. Here, it should be enough to 
describe how to construct it from the lowest energy doublet, unphysical wave 
function of Li, the one which can be described loosely as a 1s 3 configuration, and 
the hydrogen ls function. We assign electron coordinates 1 and 2 of Li, and 4 of 
H, to the unphysical Li function, and coordinate 3, that of an Li electron, to the 
hydrogen ls orbital. We must require that the Li function be antisymmetric in 
coordinates 1 and 2 so that Z2 can be antisymmetric in the Li electronic coordinates 
1, 2 and 3, as we have assumed. The product of the Li function and the hydrogen 
spin-orbital ,  spin projected and made antisymmetric in coordinates 1, 2 and 3, is 
Z2. Because Z2 puts the hydrogen electron coordinate 4 in the Li function, and one 
Li coordinate in the hydrogen function, V12 and (Z21Z~) must, like overlap integrals, 
decrease exponentially with increasing R. Since each of the unphysical states of LiH 
which lie below its physical ground state puts the hydrogen electron in the 
Li function [3], the matrix element V12 for each isolated avoided crossing of a 
physical and unphysical LiH function will be a function of exp(-R) .  This should 
help to explain why the polarization approximation gives the asymptotic 1/R dependence 
of the energy correctly. 

Consider the matrix elements H~ = (zkl ~ °  + )A?IzI), where both Zk and Zt 
are products of a physical eigenfunction of Li and a hydrogen orbital. For k ~ l and 
R very large, these matrix elements can be expanded in positive powers of I/R just 
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as they were in Ahlrichs' work on the asymptotic 1/R expansion [9]. Comparing this 
to the exp( -R)  dependence of matrix elements between physical and unphysical 
states found in the preceding paragraph, we conclude that one must be able to 
calculate the coefficients of the asymptotic I/R expansion correctly using the polarization 
approximation, because the interaction matrix elements between unphysical and 
physical states vanish so quickly with increasing R compared to the way matrix 
elements between physical states vanish. 

We find it interesting that our calculations show that the physical ground 
state is involved in a final avoided crossing at & = 1. It is interesting in part because 
it is the avoided crossing that the Heitler-London method takes into account. It is 
also interesting because the state that becomes the physical ground state at A,= 1 
must be involved as well in avoided crossings with the continuum of unphysical 
states as ~, approaches 1. We do not know what the total effect of these avoided 
crossings might be. 

The avoided crossings depicted in figs. 1 -3  are more complicated than those 
of the two-state model, but the two-state model is sufficient for understanding the 
persistence shown in the trends of the Ek(A) through avoided crossings. It also gives 
an insight into how the polarization approximation can give the asymptotic 1/R 
dependence of the energy correctly in spite of the many avoided crossings with 
unphysical states. 

4. Polarization approximation with energy level shifting 

Since we know that the unphysical eigenstates o f /4  are a definite barrier to 
the construction of a convergent perturbation theory of intermolecular interactions, 
one would think that if we could replace the actual molecular Hamiltonian H by 
an effective Hamiltonian ~/¢, which has the same eigenfunctions at H but which 
shifts all of the unphysical energies up into the physical continuum, the unphysical 
states problem would disappear. In this section, we define two such effective 
Hamiltonians and attempt to develop from them perturbation methods in the same 
direct and obvious way in which the polarization approximation was developed. 
The exercise is instructive but bears no immediate fruit. 

In a sense, what we are trying to do in this section is to save the polarization 
approximation. The polarization approximation has the attractive property that its 
second-order energy gives exactly the coefficients of the leading terms in the asymptotic 
1/R expansion [2,9]. To calculate anything other than these coefficients with the 
polarization approximation, however, is of questionable validity given the difficulties 
noted by Claverie [1 ], and Morgan and Simon [2], and the results presented in section 
2 of this paper. In contrast to the polarization approximation, the perturbation theories 
that have no unphysical-states problem for the ground state [5,7, 8] have been found 
in calculations o n  H 2 to give only a fraction of the coefficients of the leading terms 
in second order [11, 15].* Thus, there is a need for a better perturbation theory. 

*The calculations in [15] correct some errors in the results in [11]. 
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4.1. SIMPLE SHIFTING OF THE UNPHYSICAL STATES 

The simplest effective Hamiltonian, which has both the physical eigen- 
functions ~k and the unphysical eigenfunctions uk of  H as its eigenfunctions,  is 
f/'e = / ~  + B(1 - .~), in which B is a positive number and ..~ is the projection operator 
onto the space of functions which are totally anfisymmetric in the electronic position 
and spin coordinates. Note ~ a t  -~¢~k = ~k and Auk = 0. The physical energies Ek are 
eigenstates of  both H and M e. The eigenenergies of  the unphysical states are E~ with 
H, but E~ + B with .q~c By choosing B large enough, one can shift all of the 
unphysical  eigenstate energies so that they are higher than the energies of  all of the 
bound, physical, electronic states of the system. It appears that it is easy to eliminate 
the avoided crossings that invalidate the polarization approximation. 

In the polarization approximation, it is assumed that the unperturbed Hamiltonian 
H° i s  the sum of atomic Hamiltonians, and that the perturbation is I) = / ~  - / ~ o .  We 
make the same division in He so that the unperturbed problem is /~°F° = e°F °, 
where F ° is a spin-projected product  of an A-atom eigenfunction and a B-atom 
eigenfunction. The perturbation is V + B ( 1 - . ~ ) ,  which gives for the first-order 
energy E (1) = (F°IVIF°)+B(F°II-.~IF°). We know that as R tends to infinity, 
( F  ° II~lF°),  the first-order energy of the polarization approximation, approaches 
zero. This is consistent with the idea that the perturbation corrections correspond 
to contributions to the interatomic potential. For this reason, it is unsatisfactory 
that E C~ does not approach zero as R becomes infinite. As R becomes infinite, 
( F ° l l - . ~ l  F ° )  approaches the limit 1 -NA!NB! /N!  if F ° is normalized. This is 
because ( F  ° I ~',jl F ° ) = 0 in the limit of R = ,,o when P,) exchanges an A-atom electron 
with a B-atom electron. This result for E (~) is not surprising since F ° is not an 
eigenfunction of He at infinite separation, although the function .~F ° is. Thus,  at 
infinite R, the perturbation expansion must  change F ° into ~_F °, which is not a 
small change. 

It may be that the undesirable properties of the perturbation method outlined 
in the preceding paragraph are a consequence of choosing the unperturbed problem 
badly. We could have chosen/~o + B(1 - .~) as the unperturbed Hamiltonian instead 

0 0 of /~o .  This choice has a major drawback: neither F nor NF is one of its eigen- 
functions, even at infinite R. This is sufficient reason for not considering it further. 

If, because the avoided crossings between discrete physical states and the 
unphysical states have been eliminated, one chooses to ignore the obvious problems 
of the first perturbation method, the one based on /~o  as the unperturbed Hamiltonian, 
we have to recognize that there is no assurance that the perturbation expansion 
will converge in any useful sense. Again it is helpful to look at the infinite 
R limit. We know that .~F ° is an eigenfunction of He in that limit. The overlap 
between .~o ,  when normalized, and the unperturbed function F ° approaches the 
limit "~(NA!NB!/N!). For LiH, the limit is 1/2, for Ne2, 2.33 x 10 -3. The larger N 
is, the bigger the correction to be determined by the perturbation summation. We 
do not regard this as acceptable. 
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4.2. SHIFTING AND TRANSFORMING THE UNPHYSICAL STATES 

That the effective Hamiltonian with simple shifting of the unphysical energies 
does not lead to a useful perturbation theory is not disappointing to us because we 
do not like the arbitrary parameters like B. In this subsection, we analyze an 
alternative effective Hamiltonian, one without adjustable parameters. To define it, 
we use .q and the operators which appear in the molecular Hamil tonian/ t ,  namely, 
the total kinetic energy operator/ ' ,  the total nuclear-e lec t ron  potential operator 15, 
and the total electron-electron^repulsion operator ~. Let H e = i '+ & A + ~ .  Note 
that H e is Hermitian because A and 13 commute. This definition was inspired by 
the one-electron Hamiltonian of Mann and Privman [16], and by Hirschfelder 's 
version [5] of the Eisenschitz-London^perturbation theory. 

The physical eigenfunctions of H e are the Ok and their eigenvalues are the 
corresponding Ek. Since AOk = Ok, one can see immediately that HeO k =/-)O h 
= EkO k , as stated. Since the physical eigenfunctions are orthogonal to the unphysical 
functions, (uj  ]HeIO k ) =  0, and the effective Hamiltonian does not mix the physical 
and^unphysical states. The unphysical functions, however, are not eigenfunctions 
of 94~ e. Since Auk = 0, one sees that H~u k = (t" + ~)uk; the unphysical eigenfunctions 
of  H e must be mixtures of the uk. Since i" + 13 is a positive definite operator, the 
unphysical eigenvalues of  H e must all be positive. This means that H E shifts the 
energies of the unphysical states well up into the physical continuum. The unphysical 
states are exactly those of a very low density, free-electron gas. 

It is convenient, in basing a perturbation method on this effective Hamiltonian, 
to rewrite 57(e in the form f(~ = H -  ( 1 -  .q)D. As in the preceding subsection, we 
first choose ~0  as the unperturbed Hamiltonian, and write F ° for its eigenfunction. 
The perturbation is V - ( 1 - . q ) ~ .  The first-order energy is E (1) =(F°I~7 ' IF °)  
- (F  ° I(1 - .q) ~)[F °). In the limit of  infinite R, this first-order energy approaches 
the limit ( 1 - N A ! N I ~ ! / N ! ) ( F ° I ~ I F ° ) ,  which is not zero. In fact, it is quite large 
because (F°[  ~1F°)  is the expectation value of the nuclear-electron potential energy 
for A plus that of  B. As above, it is not acceptable to have E (~) approach a nonzero 
l imit  at infini te  separat ion.  If we choose the unper turbed  Hamil tonian  to 
be / ~ O _ ( l _ A ) ~ ) ,  then neither F ° nor AF ° are eigenfunctions,  which is also 
unacceptable. 

In spite of the above drawbacks, one could choose to use this 57{e anyway. 
One can verify that .~F ° is an eigenfunction of f r  in the R = oo limit. This implies, 
by the line of  reasoning used in the preceding subsection, that F ° will generally 
have small overlap with the exact eigenfunction of H e and that the perturbation 
correction will be correspondingly large. In short, this effective Hamiltonian has the 
same shortcomings as that in the preceding subsection. 

Although our examination of two effective Hamiltonians can not be called 
an exhaustive search for an improved starting point for the polarization approximation, 
it does serve to clarify the nature of the problem. We believe it is significant that 
the shortcomings of  the two effective Hamiltonians are basically the same. Clearly, 
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there is more to getting around the unphysical-states problem than shifting the 
unphysical states up in energy so that their spectrum no longer begins below the 
physical-states spectrum. 

5. Hirschfelder-Silbey method revisited 

The Hirschfelder-Silbey (HS) perturbation method has the attractive feature 
that its second-order energy gives correctly the coefficients of the leading terms in 
the asymptotic 1/R expansion of the energy of interacting atoms and molecules [10]. 
Unfortunately, the HS method has one of the same defects as the polarization 
approximation- the spectrum of the HS effective Hamiltonian differs minimally 
from that of H, so that even the lowest eigenvalue of the HS Hamiltonian for a 
physical solution is higher in energy than an infinite number of unphysical, discrete 
solutions, and is buried in a continuum of energies of unphysical, unbound 
solutions [3]. We write here physical and unphysical solutions rather than states, 
because the HS eigenfunctions that we want to calculate are not eigenfunctions of 
/~, only their projections onto irreducible representations of the symmetric group 
are. By a physical solution of the HS equation, we mean one which has a nonzero, 
antisymmetric projection, by an unphysical one, one which does not. In this section, 
we consider if the HS method can be modified in a way that gets around the 
unphysical-states problem. 

The HS method is based on the idea of exploiting exchange symmetry to 
define a function F which differs minimally from F ° in some sense. The original 
formulation [4,5] implicitly defines F in terms of the perturbation equations, not 
by some independent criterion. It is assumed that F can be written as a linear 
combination of a finite number of /~ eigenfunctions, one physical and the rest 
unphysical. Each eigenfunction used is assumed to have the same asymptotic 1/R 
expansion, and no two are assumed to belong to the same irreducible representation 
of the symmetric group unless they belong to different rows. 

The version of the HS method due to Polymeropoulos and Adams [5] is less 
specific about which functions are combined in F, but it does give an effective 
Hamiltonian '-//}1t. It is this Hamiltonian which we have analyzed [3] and which is 
called the HS Hamiltonian in the remainder of this paper. In the following subsection, 
we review the Polymeropoulos-Adams tormulation in preparation for considering 
how it may be modified to remove the problems caused by unphysical states. 

5.1. THE HS EFFECTIVE HAMILTONIAN AND THE LEAST DISTORTION CRITERION 

To understand how to improve the HS method, one has to understand how 
the properties of the HS effective Hamiltonian have been established. The best way 
to explain this should be to go through the derivation in the present context, What 
follows should be clearer than the original discussion [17], 
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In this paper, we have so far considered only one partition of the electrons 
between the two interacting atoms or molecules: the one which assigns electrons 
1 . . . . .  N A to A and electrons NA + 1 . . . . .  N = NA + Nt~ to B. This is just one of 
N!/ (NA!  NB!) possible partitions. We can obtain any one of these partitions from the 
first by interchanging pairs of electrons between the atoms. Let Pr be the operator 
which produces the rth partition from the first. We write ~'1 for the identity operator. 
Instead of  simply using /_)o and I) for the operators corresponding to the first 
partition, we now write /}ol and^ ~,l and^ instead. . . . .  of  F ° for the ei~enfunction^^ of/}1 ° 
we use F °. We def ine  F ° = ~/sF~°, H ° = :ZSH°p7 ~ and V~ = PrV~P7 ~. It fo l lows 
from /}°Fl° = e°Fl°that /}°F° = ~:°F°. 

Let F~ be a function of the N electronic position-spin coordinates which, like 
F °, is antisymmetric in coordinates 1 . . . . .  NA and, separately, in coordinates 
NA + 1 . . . . .  N. Later we explain the sense in which FI is least distorted from F °, 
but for the moment  it is enough to think of it as a function approximately like F °. 
Let F~ = ff'~ F1. We assume that the functions F~ which result from operating on F1 
with all of the distinct ~5 form a linearly independent  set, which we call the HS 
set. We form from the N-electron overlap integrals Sr~ = (F~ IF,) calculated between 
all members of  the HS set the matrix S. Since the functions in the HS set are 
assumed to be linearly independent,  the inverse of S exists. The elements of the 
inverse of S are D, s. 

We define the HS effective Hamiltonian by 

with 

0 = ~ lFr )Dr , ,  (F,. I. (5.1) 
,r~S 

The sum extends over all functions in the HS set. It follows from (5.1) that 0 is 
a projection operator, i.e., 0 is Hermitian, 0 2 = Q, and the trace of 0 equals an 
integer, the number  of functions in the HS set. Another important propeffy of 0 
is that ~ O  = 0 ~),. One can prove this starting from the observation that PrF, must  
be another function in the HS set. 

THEOREM 

If F 1 satisfies 

~ ~ , ~  = e ~ ,  ( 5 . 2 )  

where E is a constant, and HIt and 0 are defined by (5.1), then N F  l, if it does not 
vanish identically, is an eigenfunction of /} = /~o  + ~')1, the eigenvalue being 

e = ~ +  (F~ I.~ IF~) (5 .3)  
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The proof  is brief. Since ~'r and Q commute,  Q can be expressed in terms 
of functions which belong to irreducible representations of  the group formed by the 
set of  Pr" In particular, one contribution to Q must  be .~IF1)((F l I.,qlF1))-I(FI I.~. 
If one operates on eq. (5.2) from the left with .~, and at the same time uses the 
identity QF 1 = F 1, one obtains 

^ ^ 

IAIF:) 

Since /-) commutes  with all of the ~'~, it must  commute  with ..~, too. The theorem 
is proved. Note that the eigenvalue expression (5.3) has the same form as the energy 
formula in the He i t l e r -London  approximation and that it may be interpreted in a 
similar way [18]. Equation (5.3) is only one of several formulas for E that can be 
used in the derivation of a perturbation expansion [6]. 

There are other consequences of the above equations. From the definition 
of  Q,  it follows that QF r = F r. This allows us to rewrite (5.2) in the form 
[/_)o + ( 1 - Q ) ~  ]F 1 = eF 1. Because 2~ and Q commute,  this equation implies that 

[/~o + (1_ {~)r~r ]F~ =£F~. (5.4) 

If we multiply (5.4) from the left by 1 - Q, and use the projection operator property 
of  Q , w e  obtain ( 1 -  ~) ( /~°  + Vr )F~ = (1 - ~ ) / 4 F r  = 0 for all r, since the sum o f /~o  
and V r ^is exactly H.  Because ( 1 - Q ) H F  r = 0  for all r, it must  be true that 
( 1 - Q ) H Q  = 0, from which one can immediately prove that /4 and Q commute.  
This means that Q must be equal t o l ~ l ) (  ~ l l  + Zkluk)(ukl if ~ ,~ ~ l ,  the lowest 
energy physical eigenfunction of H.  The sum is over a finite number  of the un- 
physical eigenfunctions u~ of /4 because the trace of Q is a finite integer. 

To^develop a perturbation theory from the above results, we inserted 2. in 
front of ~,~] in eq. (5.2) and expanded FI, e and Q in power series A, [6].^If Q()~) 
could be expressed exactly in terms of some eigenfunctions of /.)o + ~,V1 ' as we 
have just  established that it can be for 2, = 1, then the results of  the calculations 
discussed in section 2 could be applied to the HS perturbation method. This 
is not the case. We can insert A, in front of ~ in eq. (5.1), proceed through (5.2) 
to derive eq. (5.4) and deduce, since Q(/],) must  still be a projection operator, that 
(1 - Q(~))( /~r  ° + A,V~ )F~ (,~) = 0 for all r. S ince /~o  +/q'Vr ¢/ . )o  + '~Vs for 2, < 1 and 
r e : s ,  the argument that was used in the preceding paragraph can not be used 
here. The operator Q ( 2 )  does not commute  with /~o + ~  and Q(&)^can not be 
expressed in terms of a finite number  of the eigenfunctions of/_)o + &V 1 for 2, < 1. 

We have asserted above that F1 is related to F ° in some way. In the limit 
= 1, we have shown that Q can be expressed in terms of one physical eigenfunction 

of  H and a finite number  of the unphysical eigenfunctions. Since QF 1 = F 1 , we can 
set Fl = Co~: + Z~CkUk, the sum being over the uk which contribute to Q. The 
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coefficients Co and ck are fixed by eq. (5.2) but, for the moment,  we regard them 
as parameters which we can adjust in any way we like. Let us choose these coefficients 
so that El is least distorted from F ° in the sense that (F  11/~°IF1)/<FIIF1) is a 
minimum [17]. The rationale for this definition is that the minimum requirement, 
without the constraint that F~ be a linear combination of  the functions included in 
Q, gives FI = F °. One can show that this constraint implies that Q/-)°SF! = e F  1, 
and that this equation follows also from (5.2) [17]. Thus, if F 1 satisfies (5.2), it is 
least distorted from F ° in the sense defined. 

Equation (5.2) is nonlinear in F 1, but we have been able to solve it iteratively 
for H 2 and Hell + to rather high accuracy, using up to 500 two-electron configurations 
[18, 19]. Similar calculations on LiH have not been done, and they may be impossible 
to do because of  the unphysical states which are lower in energy than the physical 
ground state. Calculations like those in section 2 should be difficult to do with H H, 
particularly in the^neighborhood of the avoided crossings that must be present in 
the spectrum of H n ( t ) .  

5.2. SIMPLE LEVEL SHIFTED EFFECTIVE HAMILTONIAN 

The HS method outlined above can be looked at as a prescription for converting 
a given Hamiltonian into a Hamiltonian for determining a function FI which is least 
distorted from F °. Here, we apply the prescription to -q?/e =/~1 ° + ~?1 + B ( 1 -  .~), 
the first effective Hamiltonian introduced in section 4. When we substitute 

+ B(1 - . ~ )  for ~ in eq. (5.3), we get a new HS effective Hamiltonian: 

ho +  1-8 8+ 8(1- A)- 88(1-. )8 

= £ c  H + 8 ( 1  - - 8 8 ( 1  - (5.5) 

one which should have no unphysical solutions lower in energy than tile lowest 
energy physical solution. However, what have we really accomplished by doing 
this? 

From the definition of  8 in eq. (5.1), it follows that 8 and .q commute. 
Furthermore, since {0 2 = 8,  the last two terms on  the right in (5.5) combine 
to give B ( 1 - . ~ ) ( 1 - Q ) .  Thus, the Hamiltonian H in (5.5) reduces t o^H = H n 
+ B(1 - A)( I  - Q). The perturbation expansions are developed from H F  1 = £F 1. 
Since QF  1 = F1, one sees that H F  = HnF.  This will be true no matter how we 
introduce the expansion parameter X as long as there is a factor of  1 - {0 multiplying 
the level shift operator. The new HS effective Hamiltonian must give, therefore, the 
same perturbation expansion as the old one. Nothing is accomplished by using the 
effective Hamiltonian defined in (5.5). 
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5.3. EFFECTIVE HAMILTONIAN WITH SHIFTED AND TRANSFORMED UNPHYSICAL STATES 

In section 4, we introduced the Hamiltonian ^ S [ e = / q - ( 1 - A ) O  which has 
the same physical eigenfunctions and eigenvalues as H,  but for which the unphysical 
eigenfunctions and eigenvalues were those of i" + ~. We try here to use this effective 
Hamiltonian as the basis for an improved HS method. 

The first problem we encounter in applying the HS prescription arises because, 
as we have demonstrated in this paper, Q must depend on one physical eigenfunction, 
say qb 1, and a finite number  of unphysical eigenfunctions of H e . We have 
shown that F, is a linear combinat ion of these functions such that F1 is least 
distorted from F °, and we have assumed implicitly that this makes F~ differ little 
from F °. However, this assumption must be false when the unphysic'~ functions 
we mix with O1 are as highly delocalized as the eigenfunctions of t" + ~, the Hamiltonian 
for an electron gas, must  be. 

We can redefine Y?/'e so that its physical eigenfunctions remain those of 
/-}, and so that only the energies of those unphysical eigenfunctions not 
appear ing in 0 are t ransformed and shifted to posi t ive values.  We set S[ e 
= H - (1 - Q)(1 - .q)0(1 - 0) .  We substitute ~ - ( 1 -  0)(1-.,21) f~(1- 0 )  for ~ in 
(5.1) to obtain 

y?/- = / ~ o  + ~ _ 0 ! 2 1 0 _ ( 1 _ 0 ) ( 1  - -~I) ~ ( 1 -  0) .  

If one assumes that ~ approaches zero as R approaches infinity, and that 0 becomes 
0 °, then Y2/Fl° = e°F1 ° in this limit, which is what we want. Unfortunately,  this 
effective Hamiltonian has the same defect as the one proposed in the preceding 
subsec t ion ,  namely ,  5C/Fl ='f/llF1 because  ( 1 - 0 ) F I  = 0 .  This  means  that the 
perturbation expansion that results with the above Hamiltonian must  be identical to 
the HS expansion, which we believe to be divergent. 

There is a way in which to fix what is wrong with the f /  defined above, but 
it means not understanding the resultant effective Hamiltonian as well as we understand 

^ 

Y-/'H- Consider  the effective Hamiltonian 

Y?/e = / - ) - ( 1 - 0 ° ) ( 1 - - ~ I ) 0 ( 1 -  0 ° ) ,  (5 .6)  

where 0 ° is ~ constructed from F °. This Hamiltonian has the same physical eigen- 
functions as H because 1 - N commutes  with 0 °. Furthermore,  in the limit R = o% 
all of the Fr°are eigenfunctions of  this operator since ( 1 -  0 °)F~ ° = 0. The unphysical 
eigenfunctions which are orthogonal to those which appear in ~o,  must have positive 
energies since they are eigenfunctions of (1 - 0 °)~1 - .q)(t  ̂  + ~)(1 - 0 °). From (5.6) 
and (5.1), substituting ' ~ - ( 1 -  0 ° ) ( 1 - . q ) O ( 1 - Q  °) for q in the latter, we arrive 
at a new HS effective Hamiltonian 

y.?/- =/.}o + q - 0 1 2 , 0 - ( 1 -  0 ° ) ( 1 -  . q ) 0 ( 1 -  0 ° ) 

+ 0(1 - 0 °)(1 - .~)f;(1 - 0 ° ) 0 .  (5.7) 
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An HS-type perturbation method based on this H will definitely not give the same 
expansion as H H since H F  1 ~ HHF 1. 

One preliminary test that must be passed if the perturbation expansion based 
on (5.7) is to converge for physical functions is that the eigenvalues of (5.6) as 
functions of the expansion parameter ;t, should have no avoided crossings involving 
the eigenvalues of physical functions. We can check this by ab initio calculations 
using the programs described in section 2. Two sets of calculations will be necessary 
because there are two ways in which we can introduce ~,, namely, 

f/'e, (~ , )=/ t l  ° + )1.[ ¢ , -  (1 - Q°)(1 - .~) 13(1 - 0°)] ,  (5.8a) 

fl'~C'e2 ()l,)=/}°-(I- Q°)( l -  ,,~)~(I- 0 ° ) + Xq. (5.8b) 

The second effective Hamiltonian introduces an alternative to /}o  as the unperturbed 
Hamiltonian, . ¢ / ° = h ° - ( 1 - Q ° ) ( 1 - . ~ ) 1 3 ( 1 - ~ ) ° ) .  One can verify that F ° i s  an 
eigenfunction of /~o .  We have not been able to do calculations with these Hamiltonians 
in time for this paper, but we believe that the lowest eigenvalue of Hel(~,) will 
undergo no avoided crossings for ~ < 1. We believe this is because the eigenvalues 
of /~o and /-) at infinite R are in one-to-one correspondence up to the energy of 
the ionic state Li+H -. At A, = 1 there is the potential for an avoided crossing because 
the effect of the projector 1 - ~ o  at infinite R is to make the unphysical functions 
derived from F ° degenerate with F ° a^gain. We expect a similar effect at finite R. 
The behavior to be expected of the He2(,~ ) eigenvalues is not obvious to us. 

The HS perturbation^equations based on taking /~o as the unperturbed 
Hamiltonian and the rest of H in eq. (5.7) as the perturbing potential can be derived 
easily from the equations given in ref. [6]. We expand all quantities which depend 
on ,1, in power series, e.g. Q(X)={~o+ ~ { ~ ( 1 ) +  . . . .  We find that F[ 1), the first-order 
function, is determined by 

(/}0 _ eO)Fl(,)= _ ( l_~O)qF1  o, (5.9) 

the first-order correction to eo being 0. This equation is identical to the equation 
for the first-order wave function in the HS method [6]. Since the second-order 
energy is determined by F ° and F~ 1), the second-order energy we calculate with this 
new HS method will be exactly equal to what is obtained with the old. The operator 13 
will appear first in the third-order energy, i.e., the new method is not identical to 
the old, it gives a different perturbation expansion. The new method is based on a 
Hamiltonian which, by design, is expected to have no unphysical-states problem 
and, consequently, may give a convergent expansion. Our tentative conclusion: the 
old HS method is correct through second order in the energy. 

Assuming that ~(e2 does not have an unphysical-states problem, we can develop 
an alternative HS method based on @ as the unperturbed Hamiltonian, the perturbation 
being the rest of f / a s  defined in (5.7). The resultant perturbation equations through 
first order in ~ are 
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(~/ 'o_ eO)FlO = eOFlO, (5.10a) 

(:771o_ eo )6(1) = -(1 - Q°)V1F1 ° + e(')F1 ° . (5 .10b)  

The right-hand side of (5.10b) can be simplified by showing that e 0) vanishes. 
These two equations differ from the old HS equations [6] by having/~o replaced 
by ~co. It follows that the expansion of E(~,) will begin in second order to differ 
from the HS expansions that were previously derived [6]. It is also likely that the 
coefficients in the 1/R expansion calculated from the second-order energy will 
differ from those found in the polarization approximation, due to the difference 
between 9?/° and/~o. All of this is not consistent with the tentative conclusion of 
the preceding paragraph, but it remains to be seen that 27f~2()t.) has a spectrum 
consistent with a convergent perturbation expansion. 

Our goal in this section was to save the HS method. Although further work 
is needed to see if we have succeeded, we believe that we have made some progress 
towards that goal. 

6. Discussion 

We began the work on which this paper is based with the belief that the better 
one understands the problem posed by unphysical states in the theory of interacting 
atoms and molecules, the more chance one has of solving it. The ab initio calculations 
discussed in sections 2 and 3 verify that unphysical states are a real problem and 
that perturbation expansions in ~, must diverge, as had been expected [1,10]. The 
problem is formidable, obtaining convergence to one physical state when there are 
an infinite number of lower energy unphysical states with which the physical state 
can interact [2], but we know that it is not unsolvable because there are at least three 
effective Hamiltonians which potentially eliminate the problem for the physical 
ground state [3]. These effective Hamiltonians have the drawback that they do not 
give correctly in second-order the leading terms in the asymptotic 1/R expansion 
of the energy. Our goal has been to design a better effective Hamiltonian than any 
previously proposed. 

One can ask, do we need anything better than the polarization approximation? 
It is a straightforward method, simply the Rayleigh-Schr6dinger perturbation theory 
with the zeroth-order Hamiltonian H ° equal to the sum of the atomic Hamiltonians. 
And it does give correctly the leading 1/R coefficients in second order. If one is 
only interested in the asymptotic 1/R behavior of the energy, one needs nothing 
more. If, however, one calculates even the second-order energy at separations R 
where exchange energy begins to become significant, one has no idea how much 
in error that energy must be. All we are really sure of is that the second-order 
energy is part of a divergent series in the expansion parameter & at finite R, but that 
as R ---) oo it is asymptotically correct. That the series diverges has been clear since 
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the work of  Claverie. Any hope that for some unknown reason the series would 
converge should be dispelled by the calculations in section 2. 

The three effcctive Hamiltonians, which have no unphysical-states problem 
in the limit of  infinite R, differ from /~(;t)  in ways which raise all unphysical state 
energies above the energy of  the physical ground state. Since we are interested only 
in the physical states, it should not matter how the unphysical states are transformed 
and shifted about. Thus, an obvious starting point for designing a better effective 
Hamiltonian is to look for operators which can sweep the unphysical states to higher 
energies. All of the cffcctive Hamiltonians considered in this paper do this. 

There is more to designing an effective Hamiltonian than taking care of  the 
unphysical states. We tbund in section 4 that we could not develop from the effective 
Hamiltonian that we had defined there: perturbation expansions in A that had 
properties consistent with what one should reasonably expect. What we expected 
was based on choosing /}() as the zero-order Hamiltonian at all nuclear separations. 
Thus, the zero-order wave function is the spin-projected product of  atomic functions 
F ° and the zero-order energy is E °, the sum of atomic energies. With these choices 
made, it is reasonable to want the first and all higher order corrections to vanish 
as R --+ ,,o since the interatomic potential should vanish in that limit. Furthermore, 
one wants the correction to F ° to be small, but this is not the case if the perturbation 
expansion must transform F~ into the physical ground state function O~. The correction 
can not be small because • 1 ,* .~F1 ° at infinite R, so that the overlap integral between 
F ° and O1 is very small even for two Ne atoms. If the perturbation expansion 
transforms F ° into O1, one of its major effects must be to antisymmetrize F °, a 

^ 

result which can be more efficiently achieved using A. We did not consider the 
alternative of  using .qFl ° as the unperturbed wave function because we did not find 
a suitable zero-order Hamiltonian. 

The problems encountered in section 4 suggested that we try, a more sophisticated 
method for arriving at an effective Hamiltonian, one better suited to the development 
of  a perturbation expansion with acceptable properties. The HS concept, reworked 
[17], is effectively a prescription for writing down an effective Hamiltonian that has 
as one of  its eigenfunctions a function Fl which is least distorted from F ° in an 
energy sense and which satisfies .~FI,,~ O 1. In addition, it is known that the HS 
perturbation method gives the asymptotic 1/R depedence of  the energy correctly in 
second order. The immediate result of  applying the prescription to the two effective 
Hamiltonians from section 4 was two deadends, but the second suggested the 
adjustments which led to the effective Hamiltonians in eqs. (5.6) and (5.7). In short, 
our design effort did not give directly an acceptable effective Hamiltonian, but it 
led us to one. 

What we have not yet done is to check the spectra of the effective Hamiltonians 
defined in eqs. (5 .6)- (5 .8)  for avoided crossings as & increases from 0 to 1. Until 
we have done these calculations, (5.8a) and (5.8b) should be regarded only as 
potential solutions to the unphysical-states problem. (Some calculations with level 
shifted Hamiltonians have been done since this paper was completed [20].) 
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What we have done in this paper must  appear highly artificial and unphysical,  
and it largely i s . O n  the other hand, we are trying to solve a mathematical  problem 
which arises because we are imposing on a many-electron system an artificial, 
conceptual picture. What is conceptually interacting atoms or molecules is physically 
a collection of  nuclei and indistinguishable electrons. As long as we maintain the 
indistinguishability of the electrons, there is no unphysical-states problem. It is 
when we divide the electrons into distinguishable groups that the unphysical solutions 
to the SchrOdinger equation become a problem. 

A c k n o w l e d g e m e n t s  

The calculations were made possible by a generous grant of time on the 
IBM 3081 at Rutgers University Computer  Services. 

A p p e n d i x  

In section 2, we said that the P/j can not be reprcsented in the bideterminantal 
basis  used for LiH, but that P / cou ld  be. We also asserted that the application of 
1 - P1 and of  3 + 2t'1 to an eigenfunction o f /~o  gives an infinite separation, a physical 
and an unphysical eigenfunction of H,  respectively. Here, we sketch explanations 
for these statements. 

Consider the product of a Slater determinant of the spin-orbitals ~1, gr2 and 
V3 for electrons 1, 2 and 3, with single orbital tp(4) for electron 4. We write 
D(gq,  ~/2, V3)1,2,3 for this Slater determinant, the electron coordinates being indicated 
by the subscript. It follows that 

PID( I//1, I//2, I//3 )1,2,3 q)(4) = D( I/t 1 , I//2, I//3)4.2, 3 ~(1) 

+D(  g:1, N2, ~3 )1.4,3 q~(2) +D(  ~/:, I//2 , ~3 )1,2,4 ~o(3). 

Expand each determinant on the right in minors along the row containing the Vk 
which depend on coordinate 4. Rearrange the terms in the resultant sum into three 
groups, so that one can factor out l/t1(4) from the first group, ~2(4) from the second, 
and so on. The group of three terms multiplying ~1(4) sums to the determinant  
D(q), I//2, I//3)1,2, 3. Similarly, I//2(4 ) and I//3(4) are seen to be multiplied by determinants. 
Thus, 

PID( g/l, I//2, I//3 )1,2,3 ~0(4) = D(~o, 1/t 2 , I//3 )1.2,3 ~//1 (4) 

+ D( I//1 , ~p, I//3 )1,2,3 I~t'2 (4) + D( V/l, I//2, q9)1,2.3 1[13 (4). 

This is a special case of  a general result, PI applied to a bideterminantal function 
gives a sum of bideterminantal functions with the same partitioning of  coordinates 
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between the determinants as in the original function. The sum can be generated by 
summing over all single interchanges of orbitals between the original two determinants. 
For LiH, one can show by inspection that ~j  applied to a bideterminantal function 
does not give a bideterminantal function, or a sum of  bideterminants,  with the same 
partitioning of  electrons between the determinants as in the original function. 

The easiest way we know to show that at infinite R one obtains eigenfunctions 
o f / 4  from those of  ~ o  by applying 1 -  PI and 3 + PI is to introduce a function 
Z1 = ~(1 ,  2, 3)~o(4), where q~(1, 2, 3) is totally antisymmetric in the coordinates 1, 
2 and 3. This function has the same permutational symmetry as the eigenfunctions 
o f / ~ o  Define Zk+l= Pk,4Z1. Since the P/j operators commute  with H,  one can 
easily show for k =  2 to 4 that (Zk IHIzk)=(Z11HIz1) =a, the precise value of 
which is unimportant  to our argument. Similarly, for k = 2 to 4, one must  have 
(Z1 I /~  I,g~k)= (ZI  IHIz2)  =b" Finally, one can show that (Z4 I/~IX2)= (,~3 I/QIZ2) 
= (Z4 I H IZ3) = - b .  The matrix of  (Z,~ I/~ Izt ) has a nondegenerate eigenvalue equal 
to a -  3b and a threefold degenerate eigenvalue equal to a + b. The unnormalized 
eigenvector which gives the first eigenvalue is [ 1 , - 1 , - 1 , - 1 ] .  The eigenvalue 
a + b is obtained with the unnormalized eigenvectors [3, 1, 1, 1], [0, 2 , -  1 , -  1] and 
[0, 0, 1 , - 1 ] .  Note that none of these eigenvectors depend upon a or b, they are 
determined by the permutational symmetry which was used in calculating the matrix 
elements. The same result can be obtained by using operators which project onto 
irreducible representations of  the symmetric  group. 

The function corresponding to the vector [ 1 , - 1 , - 1 , - 1 ]  is (1 - ~'t)Z1. That 
the resultant sum of  ~ e  four Zk's is antisymmetric,  i.e., physical, is easy to verify 
by application of the ~j .  Also, if • is approximated by a 3-electron Slater determinant, 
(1 - Pt)Z1 can be represented in the bideterminantal basis. One can, in fact, show 
that this sum is a 4-electron Slater determinant. The vector [3, 1, 1, 1] gives the 
function 3Z1 + Z2 + Z3 + c4 = (3 + ~'t )Z1- Thus, i f ~  is a 3-electron Slater determinant, 
(3 + ~'t )Z1 can be represented in the bideterminantal basis. One can verify that this 
function can not be made antisymmetric, i.e., it is unphysical, by applying (1 - PI ) to 
it. The result is zero. The remaining two vectors give functions which are not 
representable in the bideterminantal basis. 

The symmetric group, irreducible representations of the physical and unphysical 
states of  LiH can be found in the paper by Kutzelnigg [10]. 
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